If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-12x-75=0
a = 1; b = -12; c = -75;
Δ = b2-4ac
Δ = -122-4·1·(-75)
Δ = 444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{444}=\sqrt{4*111}=\sqrt{4}*\sqrt{111}=2\sqrt{111}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{111}}{2*1}=\frac{12-2\sqrt{111}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{111}}{2*1}=\frac{12+2\sqrt{111}}{2} $
| p/6-20=-13 | | 2/3x=8.2/3x=-4 | | 3/4x+1/8=7/8 | | -3(s-80)=0 | | b+12/5=4 | | x-55=51 | | h/9+94=99 | | 2z-(-17)=93 | | 3+10x=-94x | | 7v-9=75 | | (x-4)x2+3x-22x2=360 | | -3/2p+1/4=1/8 | | 21-2k=9 | | 21+4m=97 | | 2x-195=2x+160 | | 2x-(11+3)(x-4)=77 | | 0.25x+7=10 | | 22-3k=19 | | x-5^2=49 | | -3/2p=1/4 | | a+130+(2a-40)=360 | | 24-2f=4 | | 13-3c=7 | | 22−3k=19 | | a+130+(2a-40)=180 | | 99=7s+1 | | 5(y-79)=95 | | 12x2+12x-340=0 | | 4b=–10+3b | | 3=b+9/9 | | 0.2y-3=0.4y | | 6u+10=u |